\(\int \frac {\text {sech}(c+d x)}{a+b \tanh ^2(c+d x)} \, dx\) [109]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 36 \[ \int \frac {\text {sech}(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {\arctan \left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {a+b} d} \]

[Out]

arctan(sinh(d*x+c)*(a+b)^(1/2)/a^(1/2))/d/a^(1/2)/(a+b)^(1/2)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {3757, 211} \[ \int \frac {\text {sech}(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {\arctan \left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} d \sqrt {a+b}} \]

[In]

Int[Sech[c + d*x]/(a + b*Tanh[c + d*x]^2),x]

[Out]

ArcTan[(Sqrt[a + b]*Sinh[c + d*x])/Sqrt[a]]/(Sqrt[a]*Sqrt[a + b]*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3757

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> With[{ff = F
reeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[ExpandToSum[b*(ff*x)^n + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 -
ff^2*x^2)^((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] &&
IntegerQ[n/2] && IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{a+(a+b) x^2} \, dx,x,\sinh (c+d x)\right )}{d} \\ & = \frac {\arctan \left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {a+b} d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.00 \[ \int \frac {\text {sech}(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {\arctan \left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {a+b} d} \]

[In]

Integrate[Sech[c + d*x]/(a + b*Tanh[c + d*x]^2),x]

[Out]

ArcTan[(Sqrt[a + b]*Sinh[c + d*x])/Sqrt[a]]/(Sqrt[a]*Sqrt[a + b]*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(101\) vs. \(2(28)=56\).

Time = 0.90 (sec) , antiderivative size = 102, normalized size of antiderivative = 2.83

method result size
risch \(-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 a \,{\mathrm e}^{d x +c}}{\sqrt {-a^{2}-a b}}-1\right )}{2 \sqrt {-a^{2}-a b}\, d}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 a \,{\mathrm e}^{d x +c}}{\sqrt {-a^{2}-a b}}-1\right )}{2 \sqrt {-a^{2}-a b}\, d}\) \(102\)
derivativedivides \(\frac {2 a \left (\frac {\left (\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{d}\) \(152\)
default \(\frac {2 a \left (\frac {\left (\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{d}\) \(152\)

[In]

int(sech(d*x+c)/(a+b*tanh(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-1/2/(-a^2-a*b)^(1/2)/d*ln(exp(2*d*x+2*c)-2*a/(-a^2-a*b)^(1/2)*exp(d*x+c)-1)+1/2/(-a^2-a*b)^(1/2)/d*ln(exp(2*d
*x+2*c)+2*a/(-a^2-a*b)^(1/2)*exp(d*x+c)-1)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 159 vs. \(2 (28) = 56\).

Time = 0.27 (sec) , antiderivative size = 511, normalized size of antiderivative = 14.19 \[ \int \frac {\text {sech}(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\left [-\frac {\sqrt {-a^{2} - a b} \log \left (\frac {{\left (a + b\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a + b\right )} \sinh \left (d x + c\right )^{4} - 2 \, {\left (3 \, a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a + b\right )} \cosh \left (d x + c\right )^{2} - 3 \, a - b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{3} - {\left (3 \, a + b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) - 4 \, {\left (\cosh \left (d x + c\right )^{3} + 3 \, \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + \sinh \left (d x + c\right )^{3} + {\left (3 \, \cosh \left (d x + c\right )^{2} - 1\right )} \sinh \left (d x + c\right ) - \cosh \left (d x + c\right )\right )} \sqrt {-a^{2} - a b} + a + b}{{\left (a + b\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a + b\right )} \sinh \left (d x + c\right )^{4} + 2 \, {\left (a - b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a + b\right )} \cosh \left (d x + c\right )^{2} + a - b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{3} + {\left (a - b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + a + b}\right )}{2 \, {\left (a^{2} + a b\right )} d}, \frac {\sqrt {a^{2} + a b} \arctan \left (\frac {{\left (a + b\right )} \cosh \left (d x + c\right )^{3} + 3 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + {\left (a + b\right )} \sinh \left (d x + c\right )^{3} + {\left (3 \, a - b\right )} \cosh \left (d x + c\right ) + {\left (3 \, {\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 3 \, a - b\right )} \sinh \left (d x + c\right )}{2 \, \sqrt {a^{2} + a b}}\right ) + \sqrt {a^{2} + a b} \arctan \left (\frac {\sqrt {a^{2} + a b} {\left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right )\right )}}{2 \, a}\right )}{{\left (a^{2} + a b\right )} d}\right ] \]

[In]

integrate(sech(d*x+c)/(a+b*tanh(d*x+c)^2),x, algorithm="fricas")

[Out]

[-1/2*sqrt(-a^2 - a*b)*log(((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d
*x + c)^4 - 2*(3*a + b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 - 3*a - b)*sinh(d*x + c)^2 + 4*((a + b)
*cosh(d*x + c)^3 - (3*a + b)*cosh(d*x + c))*sinh(d*x + c) - 4*(cosh(d*x + c)^3 + 3*cosh(d*x + c)*sinh(d*x + c)
^2 + sinh(d*x + c)^3 + (3*cosh(d*x + c)^2 - 1)*sinh(d*x + c) - cosh(d*x + c))*sqrt(-a^2 - a*b) + a + b)/((a +
b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(a - b)*cosh(d*x +
c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a - b)*cosh(d*x +
 c))*sinh(d*x + c) + a + b))/((a^2 + a*b)*d), (sqrt(a^2 + a*b)*arctan(1/2*((a + b)*cosh(d*x + c)^3 + 3*(a + b)
*cosh(d*x + c)*sinh(d*x + c)^2 + (a + b)*sinh(d*x + c)^3 + (3*a - b)*cosh(d*x + c) + (3*(a + b)*cosh(d*x + c)^
2 + 3*a - b)*sinh(d*x + c))/sqrt(a^2 + a*b)) + sqrt(a^2 + a*b)*arctan(1/2*sqrt(a^2 + a*b)*(cosh(d*x + c) + sin
h(d*x + c))/a))/((a^2 + a*b)*d)]

Sympy [F]

\[ \int \frac {\text {sech}(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\int \frac {\operatorname {sech}{\left (c + d x \right )}}{a + b \tanh ^{2}{\left (c + d x \right )}}\, dx \]

[In]

integrate(sech(d*x+c)/(a+b*tanh(d*x+c)**2),x)

[Out]

Integral(sech(c + d*x)/(a + b*tanh(c + d*x)**2), x)

Maxima [F]

\[ \int \frac {\text {sech}(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\int { \frac {\operatorname {sech}\left (d x + c\right )}{b \tanh \left (d x + c\right )^{2} + a} \,d x } \]

[In]

integrate(sech(d*x+c)/(a+b*tanh(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate(sech(d*x + c)/(b*tanh(d*x + c)^2 + a), x)

Giac [F]

\[ \int \frac {\text {sech}(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\int { \frac {\operatorname {sech}\left (d x + c\right )}{b \tanh \left (d x + c\right )^{2} + a} \,d x } \]

[In]

integrate(sech(d*x+c)/(a+b*tanh(d*x+c)^2),x, algorithm="giac")

[Out]

sage0*x

Mupad [B] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 147, normalized size of antiderivative = 4.08 \[ \int \frac {\text {sech}(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {\mathrm {atan}\left (\frac {4\,a^2\,d^2\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c-{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\,\sqrt {a^2\,d^2+b\,a\,d^2}\,\sqrt {a\,d^2\,\left (a+b\right )}+{\mathrm {e}}^{3\,c}\,{\mathrm {e}}^{3\,d\,x}\,\sqrt {a^2\,d^2+b\,a\,d^2}\,\sqrt {a\,d^2\,\left (a+b\right )}}{2\,a\,d\,\sqrt {a\,d^2\,\left (a+b\right )}}\right )+\mathrm {atan}\left (\frac {{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\,\sqrt {a\,d^2\,\left (a+b\right )}}{2\,a\,d}\right )}{\sqrt {a^2\,d^2+b\,a\,d^2}} \]

[In]

int(1/(cosh(c + d*x)*(a + b*tanh(c + d*x)^2)),x)

[Out]

(atan((4*a^2*d^2*exp(d*x)*exp(c) - exp(d*x)*exp(c)*(a^2*d^2 + a*b*d^2)^(1/2)*(a*d^2*(a + b))^(1/2) + exp(3*c)*
exp(3*d*x)*(a^2*d^2 + a*b*d^2)^(1/2)*(a*d^2*(a + b))^(1/2))/(2*a*d*(a*d^2*(a + b))^(1/2))) + atan((exp(d*x)*ex
p(c)*(a*d^2*(a + b))^(1/2))/(2*a*d)))/(a^2*d^2 + a*b*d^2)^(1/2)